SYNTHESIS OF THE EPIMERIC PAIR OF 4-DEOXY-4-(R)- AND 4-DEOXY-4-(S)-C-METHYL-N-ACETYLNEURAMINIC ACID¹⁾ ## Michael HARTMANN and Erich ZBIRAL* Institut für Organische Chemie der Universität Wien Währingerstr. 38. A - 1090 Wien, AUSTRIA Summary: A 4-C-methylene sialic acid derivative 3 was obtained by the reaction of the corresponding 4-oxocompound 2 with CH₂I₂/Zn/Cp₂ZrCl₂. The product was transformed into a mixture of the 4-deoxy-4-(R)-methyl- and 4-(S)-methyl derivatives 4 and 5. Sialic acids 6 and 7 were obtained after the removal of protective groups. N-Acetylneuraminic acid (Neu5Ac) and various analogues, the sialic acids, are found as terminal units of many oligosaccharide sequences of glycoproteins and glycolipids. They play an important role in a series of biochemical and biological processes²). Most of the sialic acids exhibit the same structural skeleton as Neu5Ac. Nevertheless a few species are also found in natural matrices with important structural differences^{3,4}). For example, sialic acid analogue 1, was isolated in 1970⁵ from sea urchin eggs. As we are interested in new structural variants to investigate the structure-activity-relationships with the enzymes of the sialic acid metabolism⁶ as well as the haemagglutinins of Influenca Viruses, we exchanged the hydrophilic equatorial 4-OH group of Neu5Ac by the hydrophobic methyl group. This compound is structurally related to the sialic acid 1⁵. We wish to report now the first synthesis of this branched sialic acid as well as its epimeric congener via a suitable 4-C-methylene derivative. CH₃ OH $$CO_2H$$ RHN CO_2H CO_2H CO_2H CO_2H CO_2H CO_3 *) stereochemistry not assigned Our synthetic effort started with the 4-oxo derivative 27, for which we developed recently an efficient synthesis 8). When we tried to prepare a 4-C-methylene derivative by means of Wittig reaction or Peterson olefination we were not successfull, probably because of the enclization of the ketone 2 Therefore we applied the triple $Cp_2ZrCl_2/Zn/CH_2I_2$, which is described to form an intermediate carbene complex that reacts easily with enclizable ketones 9 , 10 . a) Cp_2ZrCl_2 , Zn, CH_2I_2 ; b) H_2Pd/C ; c) 1 M NaOH; d) 0.025 M HCl, Amberlyst 15 H⁺. Thus, stirring 1.3 g Zn, 750 mg zirconocene dichloride and 563 mg 2 (1.5 mmol) in 5 ml anhydrous THF an exothermic reaction took place, when 413 μ l of CH₂I₂ were added. After 8 minutes the reaction was quenched by the addition of 15 ml of saturated NH₄Cl solution. Subsequent extraction with ethyl acetate and flash chromatography yielded 395 mg (1.05 mmol) of methyl (methyl-5-acetamido-4-C-methylene-8.9-O-(methyl-ethylidene)-3,5-dideoxy- β -D-manno-2-nonulopyranosidon) at 3¹¹. This compound was transformed into a mixture of the two diastereoisomers $4^{12)}$ and $5^{13)}$ [3:2] by hydrogenation (H₂ [50 psi], Pd/C, iso-propanol-acetone [1:1]). These two methyl-branched compounds were easily separated by flash chromatography (ethyl acetate). The unambiguous assignment of the configuration of 4 (D-glycero-D-galacto) and 5 (D-glycero-D-talo) was achieved as follows: 1) All coupling constants gave clear evidence that the pyranose exists in the ${}^{2}C_{5}$ -conformation. Therefore the coupling constants $J(3_{ax}, 4) = 12.1$ and J(4, 5) = 10.5 Hz indicated an axial position of the 4-H in the case of compound 4. The opposite is true for compound 5 that showed a coupling constant J(4, 5) = 4.2 Hz corresponding to equatorial 4-H. 2) ${}^{13}C$ -nmr data were in accordance with this assumption for we could observe a high-field shift 14) of 3.35 ppm of the methylcarbon (14.86 ppm) in the axial position to the corresponding equatorial positioned methyl group (18.21 ppm) of compound 4. After removal of the protective groups $^{15)}$ from derivative 5 we obtained the 5-acetamido-3,4,5-trideoxy-D-glycero-D-galacto-2-nonulosonic acid 6a, which was transformed into its sodium salt 6b $^{15)}$ by passing over a column of Dowex 50 Na $^+$. When we applied the same procedure on 5 we isolated 7a as the only product which was also transformed into its sodium salt 7b $^{17)}$. This 2,7-anhydro-structure could be assigned by two facts: 1) in the 1 H-nmr spectrum the 6-H was found at 4.50 ppm which means a downfield-shift and a small coupling constant J(5,6) = 1.0, which are typical for 2,7-anhydro-sialic acid $^{18)}$, 2) as a 2,7-anhydro compound the 2-C led to a signal at 107.7 ppm in the 13 C-nmr $^{19)}$. ## Acknowledgements We are grateful to Ms. S. Kotzinger for competent technical assistance. This work was supported by the Fonds zur Förderung der Wissenschaftlichen Forschung in Österreich, A-1090 Wien, (project number 6805). ## References and Notes - Structural Variations on N-Acetylneuraminic Acid Part 17. Part 16: E. Schreiner, E. Zbiral; Liebigs Ann. Chem. 1990 in press. - R. Schauer; Adv. Carbohydr. Chem. Biochem. 40 (1982) 132. R. Schauer; "Sialic Acids" Cell Biology Monographs vol. 10, 1982, Springer, Wien - New York. - Y. A. Knirel, E. V. Vinogradov, A. S. Shashkov, B. A. Dmitrev, N. K. Kochetkov, E. S. Stanislavsky, G. M. Mashilova; Eur. J. Biochem. 163 (1987) 627. ibid. 169 (1987) 639. - 4. D. Nadano, M. Iwasaki, S. Endo, K. Kottojima, S. Inoue, Y. Inoue; J. Biol. Chem. 281 (1986) 11550. - 5. K. Hotta, M. Kurokawa; J. Biol. Chem. 245 (1970) 6307. - For example: R. Schauer, S. Stoll, E. Zbiral, E. Schreiner, H. H. Brandstetter, A. Vasella, F. Baumberger; Glycoconjugate J. 4 (1987) 361. - E. Schreiner, R. Christian, E. Zbiral; Liebigs Ann. Chem. 1990 93.-E. Zbiral, E. Schreiner, M. M. Salunkhe, G. Schulz, R. G. Kleineidam, R. Schauer; Liebigs Ann. Chem. 1989 519. - 7. H. H. Brandstetter, E. Zbiral; Liebigs Ann. Chem. 1983 2055. - 8. M. Hartmann, E. Zbiral; Monatsh. Chem. 120 (1989) 899. - 9. J. M. Tour, P. V. Bedworth, R. Wu; Tetrahedron Lett. 30 (1989) 3927. - For similar methods (CH₂I₂-Zn-Me₃Al and CH₂Br₂-Zn-TiCl₄) see: K. Takai, Y. Hotta, K. Oshima, H. Nozaki; Tetrahedron Lett. 1978 2417. L. Lombardo; Tetrahedron Lett. 23 (1982) 4293 M. Furber, L. Mander; J. Am. Chem. Soc. 110 (1988) 3927. K. Burgess, M. J. Ohlmeyer; Tetrahedron Lett. 30 (1989) 5857. - 11. 3: 1 H NMR(250 MHz, CDCl₃/TMS): δ = 1.28, 1.35 (2 s, 2 x 3 H, C(CH₃)₂), 2.08 (s, 3 H, CH₃CO), 2.56 (ddd, 1 H, 3-H_a), 2.76 (d, 1 H, 3-H_b), 3.25 (s, 3 H, OCH₃), 3.47 (dd, 1 H, 7-H), 3.53 (dd, 1 H, 6-H), 3.78 (s, 3 H, COOCH₃), 4.00 (dd, 1 H, 9-H_a), 4.12 (dd, 1 H, 9-H_b), 4.29 (ddd, 1 H, 8-H), 4.67 (dddd, 1 H, 8-H), 4.96 (dd, 1 H, 10-H_a), 5.00 (dd, 1 H, 10-H_b), 5.84 (d, 1 H, N-H); J(3_a, 3_b) = -14.1 Hz, J(3_a, 10_a) = 1.9, J(3_a, 10_b) = 1.9, J(5, NH) = 9.3, J(5, 6) = 10.6, J(5, 10_a) = 1.9, J(5, 10_b) = 1.9, J(6, 7) = 1.3, J(7, 8) = 8.2, J(8, 9_a) = 5.4, J(8, 9_b) = 6.1, J(9_a, 9_b) = -8.1. - 12. 4: 1 H NMR(250 MHz, CDCl₃/TMS): δ = 1.21 (d, 3 H, CH₃), 1.27, 1.35 (2 s, 2 x 3 H, C(CH₃)₂), 1.98 (ABM, 2 H, 3-H's), 2.04 (s, 3 H, CH₃CO),2.21 (dddd, 1 H, 4-H), 3.24 (s, 3 H, OCH₃), 3.42 (dd, 1 H, 7-H), 3.70 (dd, 1 H, 6-H),3.75 (s, 3 H, COOCH₃), 3.96 (dd, 1 H, 9-H_a), 4.12 (dd, 1 H, 9-H_b), 4.21 (ddd, 1 H, 5-H), 4.30 (ddd, 1 H, 8-H), 5.54 (d, 1 H, N-H); $J(3_{ax}, 4) = 12.1$, J(4, 5) = 10.5, J(4, 10) = 7.2, J(5, NH) = 9.3, J(5, 6) = 10.5, J(6, 7) = 1.2, J(7, 8) = 8.2, $J(8, 9_a) = 6.0$, $J(8, 9_b) = 6.2$, $J(9_a, 9_b) = -8.6$, $J(3_{eq}, 4)$ not determined. - 13. 5: 1 H NMR(250 MHz, CDCl₃/TMS): δ = 0.97 (d, 3 H, CH₃), 1.28, 1.35 (2 s, 2 x 3 H, C(CH₃)₂), 1.53 (dd. 1 H, 3-H_{ax}), 1.96-2.18 (m, 2 H, 3-H_{equ}, 4-H), 2.04 (s, 3 H, CH₃CO), 3.27 (s, 3 H, OCH₃), 3.45 (dd, 1 H, 7-H), 3.50 (dd, 1 H, 6-H), 3.65 (ddd, 1 H, 5-H), 3.76 (s, 3 H, COOCH₃), 3.99 (dd, 1 H, 9-H_a), 4.12 (dd, 1 H, 9-H_b), 4.30 (ddd, 1 H, 8-H), 5.35 (d, 1 H, N-H); $J(3_{ax}, 3_{eq}) = -13.6$ Hz, $J(3_{ax}, 4) = 12.1$, J(4, 5) = 10.5, J(4, 10) = 6.4, J(5, NH) = 8.7, J(5, 6) = 10.2, J(6, 7) = 1.4, J(7, 8) = 8.0, $J(8, 9_{a}) = 5.7$, $J(8, 9_{b}) = 6.2$, $J(9_{a}, 9_{b}) = -8.6$. - 14a) M. Miljkovic, M. Gligorijevic, T. Satoh, D. Miljkovic; J. Org. Chem. 39 (1974) 1379. 14b) A. Klemer, W. Klaffke; Liebigs Ann. Chem. 1987 759. - 15. Typical procedure: 30 mg 5 were dissolved in a mixture of 2 ml 1M NaOH and 1 ml of methanol and stirred 120 min at 40°C. This solution was neutralized with Amberlyst 15H⁺, filtered and lyophilized. The residue was dissolved in 15 ml of 0.025 M HCl and 2 g of Amberlyst were added and heated for 2 h at 80°C. - 16. 6a: 1 H NMR(250 MHz, D₂O /DSS): δ = 0.95 (d, 3 H, CH₃), 1.65 (dd, 1 H, 3-H_{ax}), 1.99 (dd, 1 H, 3-H_{equ}), 2.03 (s, 3 H, CH₃CO), 2.06 (ddd, 1 H, 4-H), 3.53 (dd, 1 H, 7-H), 3.59 (dd, 1 H, 9-H_a), 3.67 (dd, 1 H, 5-H), 3.73 (ddd, 1 H, 8-H9, 3.81 (dd, 1 H, 9-H), 3.98 (dd, 1 H, 6-H); J(3_{ax}, 3_{eq}) = -13.3 Hz, J(3_{ax}, 4) = 12.0, J(3_{eq}, 4) = 4.14, J(4, 5) = 11.2, J(5, 6) = 9.0, J(6, 7) = 1.1, J(7, 8) = 9.1, J(8, 9_a) = 5.3, J(8, 9_b) = 2.6, J(9_a, 9_b) = -11.5. - 17. 7a: ${}^{1}H$ NMR(250 MHz, D₂O /DSS): $\delta = 0.87$ (d, 3 H, CH₃), 1.56 (dd, 1 H, 3-H_a), 1.91 (dd, 1 H, 3-H_b), 2.08 (s, 3 H, CH₃CO), 2.39 (dddd, 1 H, 4-H), 3.54 3.63 (m, 2 H, 8-H, 9-H_a), 3.75 (dd, 1 H, 9-H_b), 3.96 (dd, 1 H, 5-H), 4.50 (dd, 1 H, 6-H); $J(3_{ax}, 3_{eq}) = -14.2$ Hz, $J(3_{ax}, 4) = 12.7$, $J(3_{eq}, 4) = 5.1$, J(4, 5) = 4.0, J(5, 6) = 1.0, J(6, 7) = 1.2, J(7, 8) = 6.8, $J(8, 9_b) = 6.0$, $J(9_a, 9_b) = -8.5$, $J(8, 9_a)$ not determined. - 18. E. Schreiner, G. Schulz, E. Zbiral; unpublished results. - R. G. S. Ritchie, N. Cyr. A. S. Perlin; Can. J. Chem. 54 (1976) 2301.